Molten Salt Oxidation Technical Overview

Kevin B. Ramsey
Power Source Technology (NMT- 9)
Los Alamos National Laboratory

December 9, 1999 Southwest Technology Deployment Workshop

Program Objectives

- Stabilize ²³⁸Pu-contaminated combustible waste
- WIPP waste acceptance criteria compliance
- Recover ²³⁸Pu
- Technology deployment
- Waste volume reduction

Benefits

- Removes combustible component of ²³⁸Pucontaminated wastes
- Recovery of ²³⁸Pu for reuse in heat source operations
- Significant reduction of the volume of TRU waste requiring disposal
- Legacy and newly generated waste disposal cost savings

²³⁸Pu-Contaminated Materials

- Polypropylene (PP) bottles
- High density polyethylene (HDPE) bottles
- Gloves
- Bagout bags (PVC)
- TygonTM tubing
- Cheesecloth wipes (cotton)
- Pyrolysis ash
- Non-RCRA organics

Combustible Materials

Molten Salt Oxidation (MSO)

- Hydrocarbons react with oxygen to form H₂O and CO₂
- Molten salt (e.g., Na₂CO₃) serves as a catalyst for the oxidation reaction
- Temperature of reaction: 900°C
- No open flame
- Acidic species such as F, Cl, Br, I, S, and P react with Na₂CO₃ to form neutralized salts
- Metal species are retained in the molten salt as metal oxides or salts

MSO Process Design

- Mature waste treatment technology
- Rapid implementation
- Solid and liquid materials can be treated
- Inorganics retained in ash
- Low pressure
- TransOxTM system compatible with glovebox operation
- Semi-batch process

MSO Process Design - continued

- Safe operation and minimal handling of ²³⁸Pucontaminated materials
- Throughput of 2 kg/hr
- Minimal feed pretreatment
- Minimal treatment of offgas and waste
- Reduction of TRU waste volumes
- Salt recycling with ²³⁸Pu recovery by aqueous processing

MSO Process Limitations

- Maximum concentration of ash: 20 wt. %
- Maximum concentration of neutralized salt: 95 wt.%
- Removal of spent salt is required to maintain continuous operation
- Limited to treatment of combustible wastes
- Corrosion
- Size

Traditional MSO Reactor

Molten Salt Oxidation Process

MSO Process Line

Pretreatment

- Size reduction required for solids
 - 0.95 cm (0.375 inch) material size
 - Granulation technology (Rapid Granulator, Inc.)

Size Reduction

Size Reduction

TransOx[™] System

- Aluminized Inconel 600 construction
- Internal heating/external cooling
 - Better temperature control
 - Increased energy efficiency
 - Increased throughput
- "Skull" layer of salt
- Salt drain system
- Automated operation

TransOx[™] System

- Minimal salt/metal contact
- Extended vessel life
- Decreased maintenance
- Continuous operation not required

TransOx[™] System

Salt Recycling Process

Surrogate Materials Results

Material	% Cl	Destruction Efficency
Polypropylene (PP)	0	99.998
High Density	0	99.983
Polyethylene (HDPE)		
Gloves	0	99.997
Tygon Tubing	30	99.999
Pyrolysis Ash	0	99.987
(9% wt. in ethylene glycol)		
Ethylene Glycol	0	99.999
Bagout Bags	36	99.988
Homogenized Mixture	20.5	99.974
Average		99.991

NSWC-IH

Milestones

- Complete equipment and glovebox design (09-30-99)
- Complete procurement of major equipment and gloveboxes (01-30-00)
- Complete installation of equipment and gloveboxes (09-30-00)
- Begin processing legacy waste (09-30-00)

Deployment Opportunities

- Los Alamos National Laboratory
 - Chemistry and Metallurgy Research Facility
- Savannah River Site
- Rocky Flats Environmental Technology Site

Legacy Waste

- 7500kg of ²³⁸Pu-contaminated combustible waste in storage at TA-54 and TA-55
- No treatment/packaged to meet WIPP requirements
 - 8700 drums/1831 m³
- MSO treatment/no ²³⁸Pu recovery/WIPP disposal
 - 420 drums/88 m³
- MSO treatment/aqueous recovery of ²³⁸Pu/WIPP disposal (50% process efficiency for aqueous recovery)
 - 190 drums/ 40 m³

MSO Web Site

http://www-emtd.lanl.gov/ASTD-NM/MSO.html

